亿博下载地址

当前的位置:首页> 创新中心 > 现代调和分析及其应用现代调和分析及其应用

邓稼先创新研究中心

《现代调和分析及其应用》研究团队介绍

一、 主要研究方向(包括研究内容)

(I). 现代调和分析及其在几何测度论、 数论中的应用;

调和分析领域的核心问题主要涉及:Kakeya猜想、Bochner-Riesz猜想、限制性猜想、局部光滑性猜想等。在研究上述四大猜想派生的各种方法已经成为解决调和分析、解析数论、偏微分方程、几何测度论、关联几何、数学物理等数学领域公开问题的重要工具。菲尔茨奖得主Bourgain等将许多看似不相关的研究领域如:调和分析、堆垒数论、关联几何学、几何测度论、拓扑学与代数几何、算术组合学等有机地联系起来。当然,研究与解决调和分析的四大猜想最引人入胜的是来自分析、数论和几何的多种技术间精细的相互作用。迄今为止所证明四大猜想的最好进展涉及到波包分解、尺度归纳、对垒组合乃至于高深的代数几何知识,这在客观上就需要更多年轻调和分析与PDE专家去探索诸如算术组合、堆垒数论、关联几何、几何测度论等研究领域。拟研究的问题涉及:

1. 非退化曲面(具非零Gauss曲率的超曲面)上的分离性定理与分离性猜想;

亿博下载地址 2. 离散性限制性估计与指数求和平均等价性;

3. 流形上的非线性色散方程;

4. 四大猜想的几何形式与组合数学版本的等价性;

亿博下载地址 5. 波包分解与正则性估计的几何实现;

亿博下载地址 6. 具非平凡位势的自伴算子对应的调和分析等.

(II). 流体动力学方程的数学理论

亿博下载地址 众所周知,流体动力学方程:如三维不可压缩Navier-Stokes方程光滑解的整体存在性是数学物理界最关注的公开问题, 至今尚未发现解决此该问题的有效方法, 著名数学家、Abel奖得主Nirenberg认为解决这些问题应该更多地使用调和分析方法。我们拟通过微局部分析、Littlewood-Paley理论等现代调和分析方法,研究如下问题:

1. 具有特殊结构的不可压Navier-Stokes方程与Euler方程光滑解的整体存在性(自相似结构、轴对称流体等)。

亿博下载地址 2. 可压缩Navier-Stokes方程高振荡函数的适定性与不适定性问题;

3. Maxwell-Navier-Stokes 方程(流体在电磁场作用下的运动,耦合特点源于 NS方程中Lorentz力与Maxwell方程中的电流)及相关流体动力学方程的适定性问题。

4. Navier-Stokes方程耦合上热流方程 (关于棒状液晶的指向方程)的适定性理论的研究。

(III). 非线性色散方程的散射理论.

亿博下载地址 众所周知,Morawetz估计在非线性色散(波)方程的散射理论中起着核心作用。 然而该估计无法处理临界问题,菲尔茨奖得主Bourgain开创了研究临界问题的方法(极小能量归纳)。Tao等发展了相互作用的 Morawetz 估计及其在频率空间的局部化技术, 彻底解决非聚焦临界临界Schrodinger方程的散射猜想。Kenig-Merle在Bourgain极小能量归纳的启示下, 发展了“广义变分方法”,(Profile分解与集中紧原理与刚性方法),解决了聚焦型非线性临界色散(波)方程的散射理论。然而,上述方法不适用于具有位势的非线性色散(波)方程。对于聚焦情形,当初始能量等于基态能量时,是否具有相应的刚性定理、孤立子猜想是否成立等问题也是公开的。

亿博下载地址 1. 解决了聚焦型非线性临界色散(波)方程的散射理论。

亿博下载地址 2. 具有位势项非线性色散方程的散射理论。

3. 非线性色散方程的“临界模猜想”。

4. 光滑紧流形上的非线性色散方程解的适定性与blow-up机制。

二、 团队主要成员

团队首席:苗长兴研究员

苗长兴研究员,曾荣获国家杰出青年基金、于敏数理科学奖、中国工程物理研究院杰出专家、中国工程物理研究院科技创新一等奖。近年来在国际一流的学术刊物(如:CPAM、CMP、ARMA、MZ、JFA、JMPA、SIAM、AIHP、CPDE、PLMS等)上发表论文九十余篇, 主要贡献表现在调和分析、非线性色散方程的散射理论与流体动力学方程的数学理论等研究领域,解决了若干个具有国际影响的数学问题,得到了著名数学家Kenig、Constantin等国际同行的高度评价。先后出版了《调和分析及其在偏微分方程中的应用》、《偏微分方程的调和分析方法》、《非线性波动方程的现代方法》、《Littlewood-Paley理论及其在流体动力学方程中的应用》等四部专著。 对国内这一核心数学领域的研究与发展起到了基础性的作用。所领导的科研团队被国际数学联盟前主席Kenig称为“国际偏微分方程研究领域最具活力与影响力的团队之一”。

团队主要成员

1. 陈琼蕾,研究员、博士生导师,中国工程物理研究院科技创新一等奖。主要从事现代调和分析与流体动力学方程的数学理论等研究。

2. 徐桂香,副研究员、硕士生导师, 中国工程物理研究院科技创新一等奖。主要从事现代调和分析、非线性色散方程的散射理论等研究。

亿博下载地址 3. 郑继强,主要从事现代调和分析、非线性色散方程的散射理论等研究。

三、 代表性论著

点击查看更多  现代调和分析及其应用2